How bad is wet Filament really? – Tom’s 3D printing guides and reviews

Can you leave your PLA spools out in the open and do you really need to dry PETG before every use?


What I’ve been up to last week was trying to find out how much and how quickly filament absorbs water and what the results of that are. While there’s no question that filaments like PA, Nylons, as well as PVA, absolutely need to be kept in a moisture-controlled storage solution, with the more common stuff like PLA or PETG, it’s not that clear. Sure, PETG does absorb some moisture and you’ll get some extra stringing, but how bad could it be, and is PLA just generally fine to be kept out in the open. That’s some of the things that I tried to find out, by exposing filaments to different grades of humidity and running some tests. And not everything went exactly as expected.

So in this video, I’ll be trying to get a feel for how much there really is to filament absorbing moisture. I’ve got a lot of open filament up on shelves in here, but I tell myself the dehumidifier will keep things in check and I shouldn’t worry about it too much.

But while I feel like PLA is mostly fine and maybe gets a bit brittle after a while, PETG does start to show just a bit more stringing than the same stuff new, and styrene-based filaments like ABS or ASA, I think do smell a bit more than if they were completely dry.


Three things that you might start to notice with wet filaments

  • Changes in mechanical properties:

With PLA, I don’t know if there’s something chemical happening, but for example, parts printed from wet PETG are supposed to be less strong. What’s happening here is that as the water absorbed into the filament rapidly boils off as it gets heated in the hotend, that motion of the steam actually tears apart the polymer chains that give plastic its durability. So even though your parts might look fine, because the polymer itself is supposedly altered, they might perform very differently than what you’d expect. That’s actually a similar reason why resin prints are often brittle – the cured parts have shorter polymer chains because optimizing a resin for longer chains would make it harder to print with.

Again, as the moisture boils off, it creates little puffs of steam, and those push the molten filament around, and in a hotend, there’s only one way to – out of the nozzle. You overall just get less precise control over the filament flow.

  • Increased amounts of smell:

This one is hard to measure, but thankfully a couple of studies have already looked into this. What we can notice is an odor, but what can be measured is particulate emissions from the print. As the filaments moisture content or the hotend temperature goes up, the emissions of fine and ultra-fine particles drastically increase, easily up to a point where it’s not quite healthy anymore to be in the same room with a printer.

So yes, this was something that I did notice, I think, but I didn’t quantify for these tests. I do have two particle sensors, so this might be something to look into for next time.


What exactly did I test?

Well, the first question was, how can I quantify how much moisture is being absorbed and how much of a difference it makes? So the first one should be fairly easy – grab a scale that weighs down to 10 milligrams and just weigh the filament samples fresh and after having some time to soak up some moisture. So I did that. For these tests, I’m using all-Prusa parts, that is a Prusa MK3 and PrusaSlicer which also has built-in factory-tuned profiles for the Prusament I’ll be using. I could have saved a whole lot of print time by using the Voron, but then I’d never have known whether what we’re seeing is my profiles or the material itself.

So I roughly measured out roughly 15m long samples of Prusament PLA, PETG, and ASA, enough to print my samples and a bit extra, and they went in a couple of different spots.

Subscribe to the 3dculture newsletter here, for the latest 3D printing news straight to your inbox! You can also stay connected by following us on Twitter, Facebook, Instagram and LinkedIn. 

You can follow us on our YouTube channel for the latest 3D printing video shorts, workshops, and webinar replays. 

Leave a Reply